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The context of students as architects is used to examine the similarities and differences 
between prisms and pyramids. Leavy and Hourigan use the Van Hiele Model as a tool to  
support teachers to develop expectations for differentiating geometry in the classroom  
using practical examples.

Budding Architects 
 Exploring the designs of  

pyramids and prisms

Introduction

I am still searching for ways to help my 
students identify and differentiate pyramids 
and prisms. While they readily recognise 
pyramids, they often confuse the terms and 
the structures. How can I help them identify 
solids as being pyramids or prisms and 
recognise the characteristics of these three-
dimensional solids?
      (Ella, Grade 6 Teacher)

Is this situation familiar to you? When students 
explore geometric structures, a number of forms 
must be recognised and differentiated from 
others. Many international curriculum docu-
ments recommend a focus on three-dimensional 
(3D) shapes and their nets as students approach 
the middle primary grades. The Australian 
Curriculum and Assessment Reporting Authority 
[ACARA] recommends that by Year 5, students 

should be able to connect 3D objects with their 
nets and move to constructing simple prisms  
and pyramids by Year 6 (ACARA, 2014). 
Similarly, in the United States, by sixth grade  
not only should students be able to “Represent  
three-dimensional figures using nets made  
up of rectangles and triangles” (CCSS.Math.
Content.6.G.A.4), but they should also be able  
to “apply these techniques in the context of 
solving real-world and mathematical problems” 
(CCSS.Math.Content.6.G.A.4) (CCSSM, 2010). 
In this article, we describe how we coordinated 
these common curriculum goals through the  
use of a real-world context to motivate the  
representation and exploration of prisms and 
pyramids with Year 6 students. 

Defining pyramids and prisms

Pyramids and prisms have several properties in 
common: they are 3D shapes and polyhedrons. 

 
Table 1. Important definitions. 

Shape Definition Example Non-example

Polygon Closed 2D shapes with straight 
sides.

Polyhedron 3D shapes consisting of the union 
of polygonal faces resulting in an 
enclosed region without any holes.



APMC 20 (3) 201518

Leavy and Hourigan

A polyhedron is a 3D solid with flat faces.  
Each of the faces are polygons (Table 1) i.e., 
hexagons, squares, triangles. The fact that each 
face is a polygon has implications for what can  
be classed as a polyhedron (Table 1). 3D shapes 
with curved faces, such as cylinders and cones,  
are not polyhedrons due to their circular bases.

Initial observations of pyramids and 
prisms

The teacher stated: “This morning we will be 
working as architects and examining the design  
of two different types of buildings. Architects have 
good observation skills and focus on the features 
of buildings to better help them in their designs. 
 I want you to look at these two buildings and 
identify similarities and differences between 
them.” Following this introduction, the teacher  
displayed images of two different buildings  
(Figures 1, 2). Figures 1 and 2 depict a city  
skyscraper and an Egyptian pyramid respectively. 
The skyscraper is a square-based prism and the  
pyramid is also square-based. A birds-eye view  
of the pyramid (Figure 3) was also displayed  
in an effort to focus students’ attention to the  
shape of each structure’s base.

Figure 1. The skyscraper (square-based prism).

 
Figure 2. The square-based pyramid.

 

Figure 3. Birds-eye view of the pyramid.

Students then worked in pairs to discuss their 
observations in relation to the similarities and 
differences between the buildings. They shared 
their ideas during the teacher-led whole class 
discussion:

Teacher: What similarities did you notice   
between the buildings?

Sylvia: From the birds-eye view they   
both look the same. They look square.

Peter: Yes. The bases of both of them are 
square.

Teacher: What differences did you notice between 
the buildings?

Francis:  The sides of the pyramid aren’t straight, 
they seem diagonal. But the sides of 
the skyscraper are straight – they are 
vertical. 

Cian: The skyscraper has a flat roof but  
the pyramid doesn’t. The roof of the  
pyramid has all the sides joining up  
at one point. 

Niamh: The Skyscraper is a cuboid and the 
pyramid is a pyramid. 

Teacher:  Is there another name for the shape of 
the skyscraper? It is a cuboid, but can 
you call it something else?

Analysis of student discourse, such as that in 
the dialogue above, is not a trivial endeavour for 
teachers. Instruction in geometry, and the analysis 
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of student responses, may be informed from 
many areas such as the work of Piaget, Vygotsky 
or the SOLO taxonomy. In this research we used 
the Van Hiele Model (Crowley, 1987; Van de 
Walle, 2007) to inform instruction. This model 
consists of five levels, which describe how students 
reason about shapes and other geometric ideas. 
This theory asserts that the levels are a product 
of experience and instruction. In outlining the 
theory, the Van Hiele’s present a treatment of both 
the subject matter (i.e., geometry) and the role of 
the teacher (i.e., specific instruction approaches 
and techniques). Relationships between each of 
the levels are described and suggestions are made 
for ways to support and precipitate the advance-
ment of students’ reasoning. The framework 
emphasises the role of the teacher in providing 
suitable geometrical experiences. Indeed “Van 
Hiele specifically states that the inability of many 
teachers to match instruction with their learners’ 
levels of geometrical understanding is a contribut-
ing factor to their failure to promote meaningful 
understandings in this topic” (Feza and Webb, 
2005). Hence, these factors motivated the selec-
tion of the Van Hiele framework as a guiding 
framework to inform the instructional decisions 
made in this research. 

The final question posed by the teacher was 
met with silence from the students. This activity 
and the associated dialogue provide a number  
of insights into the geometric reasoning of  
these students.

Table 2. The Van Hiele Model of Geometric Reasoning for 3D 
shapes (concentrating on the first three levels within which 
primary and middle school students are usually classified).

One observation is that students readily 
recognised the shapes as pyramids and cuboids. 
They analysed the shapes based on properties 
as indicated by their references to faces and the 
orientation of faces. In the dialogue cited, student 
comments are indicative of Level 1 behaviours 
in the Van Hiele Model of Geometric Reasoning 
(Table 2). However, the lack of awareness of a 
cuboid as being a member of the class of shapes 
called prisms indicates that students are not yet 
functioning at Level 2 of the Van Hiele Model 
of Geometric Reasoning. Students at Level 2 
are expected to engage in informal deductive 
reasoning involving classifying shapes and making 
generalisations about shapes in hierarchies.  
Hence a student functioning at Level 2 would  
see the class of prisms as containing a variety of 
3D shapes such as cubes, cuboids, and so on.  

Level Name of Level Expected behaviour in  
relation to 3D solids

When presented with a cube:

0 Visualisation Solids are judged and identified visually  
and holistically, with little or no explicit  
consideration of components or properties.

I know this is a cube because it 
looks like one.

1 Analysis The learner identifies components of solids 
and informally describes solids using isolated 
mathematical properties, although proper-
ties are not logically related. Explanations 
are based on observation. 

I know this is a cube because it has 
six faces and each face is a square. 

2 Informal
Deduction

Learners are able to logically classify  
solids and understand the logic of  
definitions. Statements are based on 
informal mathematical justifications. 

This cube is a prism because it has 
two bases and all the sides are flat.  
If you slice it in a few places the 
cross-section section is always a 
square that is the same size. 

Classifying pyramids and prisms

Following student observations of the buildings, 
we wanted to shift the focus of instruction to 
the properties you might use to classify solids as 
belonging to prisms or pyramids. Students notice 
many properties when exploring solids and their 
attention is usually drawn to: the number of  
faces, the shapes of those faces and the presence  
or absence of one or more bases. A description  
of the properties of pyramids and prisms is 
presented in Table 3; this list is not exhaustive  
and focuses on properties that are salient and 
relevant in school mathematics.  
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Pyramids Prisms

Bases One base and a point not on the same plane 
as the base. The point is called the apex.

Two opposite faces that are identical 
polygons. These faces are referred to  
as the bases. 

Shape of the base Polygon Polygon

Lateral faces The apex is connected with line segments 
to each vertex of the base resulting in lateral 
faces. Lateral faces are triangles.

Vertices of the bases are joined to  
form lateral faces. Lateral faces are 
parallelograms.

Categories If lateral faces are isosceles triangles then  
the shape is a right pyramid. Otherwise,  
the shape is an oblique pyramid.

If lateral faces are rectangles then the 
shape is a right prism. Otherwise, the 
shape is an oblique prism.

Cross-section Same polygon as the base, but the dimen-
sions get smaller the closer you get to  
the apex. 

Same polygon and dimensions as  
the base. 

The cross-sections of pyramids  
and prisms

Students were informed that the cuboid was part 
of a group of shapes known as ‘prisms’ (Oberdorf 
& Taylor-Cox, 1999; Van De Walle, 2007). The 
focus of the next section of the lesson was exclu-
sively upon allowing students to discover what 
we considered to be one of the differentiating 
characteristics between pyramids and prisms: the 
cross-section. The goal was to support students 
in using the outcomes of an examination of the 
cross-sections of 3D shapes to inform subsequent 
classification of shapes as pyramids or prisms. 

Instruction in 3D geometry usually presents 
students with planar two-dimensional (2D) 
representations of solids rather than with actual 
models (Battistia, 1999). We know that students 
have great difficulties conceptualising 3D shapes 
that are presented on 2D surfaces (Koester, 2003; 
Parzysz, 1988). Hence, the design of the instruc-
tional sequence we describe prioritises the use of 
3D models of pyramids and prisms (Cockcroft & 
Marshall, 1999) as opposed to pictures, drawings 
or other 2D representations of these solids. 

The teacher presented a cake that is a square-
based prism (otherwise known as a cuboid) and 
asked students which building best resembles 
the cake. The cake we used is commonly known 
as a Battenberg and students readily identified it 
as the skyscraper. The teacher cut a slice off the 
cake (using a horizontal cut as seen on figure 4) 

and revealed that the cross-section is square. The 
teacher continued to cut slices to demonstrate 
that the cross-section is always the same —in 
this case, a square with the same dimensions. The 
teacher used this demonstration to conclude that 
a prism has cross-sections of the same dimension 
all along its length. 

 The teacher then presented a model of a 
pyramid (figure 5). This clay model was designed 
and constructed so that the teacher could make 
horizontal cuts across the pyramid, thus facilitat-
ing the display of the cross-sections. Several cuts 
were made and students easily noted that in 
pyramids while the cross-sections are the same 
shape (in this case, squares), the dimensions of  
the cross-section changes depending on where  
the cut is made. 

 
 
Figure 4. Battenberg cake.

Table 3. Common characteristics of pyramids and prisms .
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Figure 5. Clay Model of Pyramid. 
 
After this process, the focus moved to the  
possible implications of these distinguishing 
features for architects: 

Teacher:  Why is this information about  
cross-sections important if you are  
an architect?

Orla: It would be easier to build a skyscraper 
cause all the floors are the same shape. 

Connor: Yes, and if it was the pyramid, you’d 
have to make each floor smaller as you 
go from the ground to the top. 

Teacher: What do you notice about the bases  
of the pyramid and prism?  

Kate: The prism has a floor on top and a floor 
on the bottom and they are the same. 
But the Pyramid has only the bottom 
floor.

Sam: An architect could design a viewing area 
on the top of a building if it is a prism.

Sorcha: Or you could put a helicopter pad on 
the top of a prism. But it would be 
impossible to land a helicopter on the 
top of a pyramid! 

Examining faces: exploring models of 
pyramids and prisms

The teacher posed the following task: “I want you 
to imagine that you are architects, some of you 
specialise in the design of pyramids and others in 
the design of prisms. Your task is to sort a collec-
tion of 3D shapes into pyramids and prisms. Use 
your knowledge of the cross-sections to help you 
classify the shapes. Then, I want you to closely 
observe the (lateral) faces of the pyramids and 
prisms and see if you can find similarities  
or differences”. 

Students worked in pairs or groups of three 
(Figure 6) to sort prisms (cuboid, triangular 
prism, hexagonal prism) and pyramids (tetrahe-
dron, square-based pyramid, and hexagonal-based 
pyramid). Students experienced few difficulties 
imagining the cross-sections of the shapes and 
readily used this criterion for their classification. 
Students were reminded to first sit their shape 
on the base and use this orientation to serve as 
a guide for where the horizontal cut would be 
made. This task provided insights into students’ 
ability to identify prisms and distinguish between 
pyramids and prisms. It also provided the oppor-
tunity to explore another distinguishing feature 
of prisms and pyramids relating to the shape and 
orientation of the faces. 

 

 

Figure 6. Sorting 3D shapes. 

The following is a discussion that took  
place with one group. The group had classified 
their shapes into pyramids and prisms and  
was exploring the faces of each shape in the  
respective groups. 
Teacher:  What do you observe about the faces  

of the prisms and pyramids?
Seamus: They all have a different number of 

faces. But, on the pyramids all the sides 
are triangles and they are slanted, like 
diagonally (orienting his hand to mimic 
the angle of the side). 
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A variety of 3D shapes (tetrahedron, square-
based pyramid, and a square-based prism) were 
distributed. All shapes were made using Polydrons 
as these structures are easily opened to show nets 
and then reassembled into the 3D structures. 
Students were encouraged to first observe the shape 
and predict the net (Figure 8). Then, they opened 
the shape and sketched the net (Figure 9). They 
were then encouraged to check their prediction and 
discover and sketch as many other nets for the same 
shape as possible (Figure 10). Students discussed 
with their partner why they might have drawn 
different nets. Each time a new net was discovered, 
students were encouraged to draw it and then use 
this net and reassemble the 3D shape. 

 

 
 

Figure 7. Explaining nets using the NCTM illuminations tool 
and polydrons.

 
Figure 8. Predicting the net of a square-based prism.

Teacher: Do you all agree with Seamus or have 
anything to add? 

Fiona: On the pyramid the triangle sides  
slant and meet together at the top  
of the pyramid. In a point. 

Teacher: How are the faces of the prism  
different from the pyramid?

Sarah: In the prism, the sides aren’t triangles. 
Fiona: And they are not slanty, they are straight. 

Vertical. 

Creating nets for pyramids and prisms

Net construction is a complex visualisation task 
that requires students to make translations between 
3D objects and 2D nets by carefully studying 
and moving between the component parts of the 
object in both two- and three-dimensional space. 
Nets have been found to support primary students 
in observing characteristics of 3D shapes (Mann 
2004) and aid pre-service primary teachers in 
making conjectures about the area, perimeter and 
fold lines of cube nets (Jeon 2009). 

While most students were familiar with nets, 
the teacher reminded them that the net of a 3D 
shape is what the shape would look like if it were 
opened out flat. The teacher stated: “If you are  
an architect, a net of the building is extremely 
valuable as it provides a ‘map’ of the shape of the 
exterior walls and of the ground and top floors.”  
To illustrate the relationship between a 3D 
shape and its net, the NCTM Illuminations tool 
(NCTM, nd) (http://illuminations.nctm.org/ 
Activity.aspx?id=3521) and a model of a cube were 
used. The Illuminations tool supports the display 
of a 3D object, its rotation, and the subsequent 
unfolding to form a net. The teacher selected a 
cube on the Illuminations tool, unfolded the cube 
(virtually) to form the net and then reassembled 
the net to form a cube (Figure 7, see image on 
white board). The focus then turned to a cube 
made with Polydrons (these are construction 
materials that are used to build 3D structures).  
The teacher carefully opened the cube to show  
the net (figure 7, see material in teachers hand). 
The teacher then repeated the process making a 
different net the second time and concluded by 
stating that there are 11 possible nets for a cube 
and similarly other 3D shapes have several  
different nets. 
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the properties which are common among all 
prisms and pyramids, as well as the distinguishing 
features between the two figures. It also provided 
a realistic justification for creating and examining 
the nets of these shapes. The paper describes how 
students in Year 6 can actively explore the proper-
ties of 3D shapes using a mix of traditional and 
non-traditional materials alongside the purposeful 
use of technology. It is possible that these activi-
ties could be usefully modified for other class 
levels or the instruction accelerated to support 
gifted learners.  It is our experience that the Van 
Hiele Model serves as a valuable tool in support-
ing teachers develop a range of expectations for 
students of different abilities thus supporting 
differentiation in the classroom. 
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Figure 9. Sketching the net of a tetrahedron based on the 
open 3D shape.

 
Figure 10. Alternative net for a square-based pyramid.

Conclusion

The study of 3D shapes can often be impover-
ished with respect to the use of a rich variety 
of materials, as compared to other geometric 
concepts such as 2D shapes and symmetry.  
This paper demonstrates how a context can be 
used to motivate students to discover and use  
the properties of 3D shapes. In this case, the 
context facilitated students to become aware of 
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